Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; : e3419, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247123

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC-EV in suspension cultures using spinner flasks and human collagen-coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T-flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold-increase was 5.7-fold for the 3D culture system and 4.6-fold for the 2D culture system, signifying a fold-change of 1.2 (calculated as the ratio of fold-increase 3D to fold-increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T-flask cultures. The total cell production in the spinner flask cultures was 5.2-fold higher than that in T-flask cultures. While the EV specific production (particles/cell) in T-flask cultures (4.40 ± 1.21 × 108 particles/mL, p < 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p < 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC-EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC-EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno-free conditions.

2.
Stem Cell Rev Rep ; 17(1): 71-93, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32895900

RESUMO

Mesenchymal stromal cells (MSCs) constitute a heterogeneous population of stromal cells with immunomodulatory and regenerative properties that support their therapeutic use. MSCs isolated from many tissue sources replicate vigorously in vitro and maintain their main biological properties allowing their widespread clinical application. To date, most MSC-based preclinical and clinical trials targeted immune-mediated and inflammatory diseases. Nevertheless, MSCs have antiviral properties and have been used in the treatment of various viral infections in the last years. Here, we revised in detail the biological properties of MSCs and their preclinical and clinical applications in viral diseases, including the disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection (COVID-19). Notably, rapidly increasing numbers of MSC-based therapies for COVID-19 have recently been reported. MSCs are theoretically capable of reducing inflammation and promote lung regeneration in severe COVID-19 patients. We critically discuss the rationale, advantages and disadvantages of MSC-based therapies for viral infections and also specifically for COVID-19 and point out some directions in this field. Finally, we argue that MSC-based therapy may be a promising therapeutic strategy for severe COVID-19 and other emergent respiratory tract viral infections, beyond the viral infection diseases in which MSCs have already been clinically applied. Graphical Abstract.


Assuntos
COVID-19/terapia , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais , COVID-19/patologia , COVID-19/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Pulmão/patologia , Pulmão/virologia , Células-Tronco Mesenquimais/citologia , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...